

# Design Development and Testing of the Ground Renewable Expeditionary ENergy System

Eric Shields, Alex Askari NSWC Carderock, 5/4/2011



### **Battery Technology Group**

#### • Three Primary Work Areas

- Lithium Battery Safety Testing
- Advanced Battery Development
- Renewable Energy Testing and Evaluation

#### Personnel

- Physicists (2)
- Mechanical Engineers (4)
- Chemical Engineers (3)
- Materials Engineers (2)
- Technicians (3)













#### **Outline**

- Program Goals
- Design Goals
- Technology Selection
- Prototype Development
- Proof of Concept Testing and Validation
- Battery Design/Development
- USMC procurement and fielding
- Conclusions



## Ground Renewable Expeditionary ENergy System (GREENS)

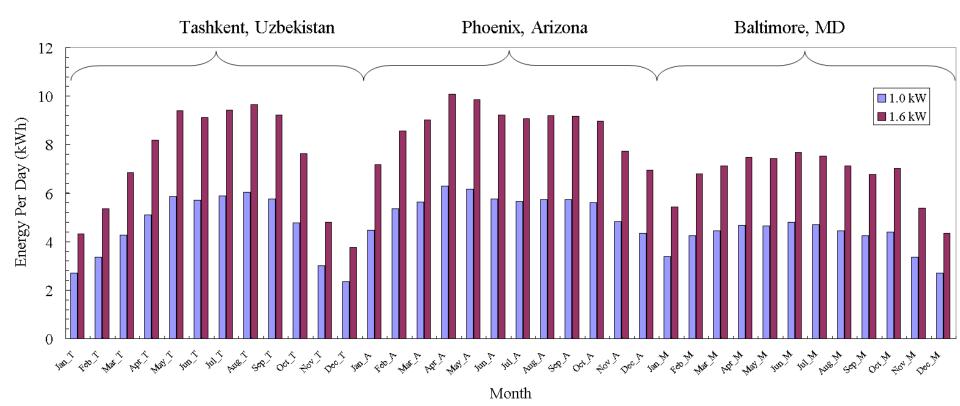
- Jointly funded renewable energy development effort (USMC, ONR)
- The scope of the work encompasses two efforts
  - Develop a 300W continuous renewable energy system
  - Test and evaluate COTS systems
- The focus of this presentation will be the developmental efforts associated with the 300W system



## **GREENS 300W System Design Goals**

- Provides 300W continuous, 600W peak from a renewable source
  - 7.2kWh per day
  - 4.8kWh of energy storage
- Consists of individual packages weighing less than 80lbs
- Provides 24VDC and 120VAC output (true sine wave)
- Is capable of being setup in under 20 minutes by 4 Marines
- Weighs under 1000 lbs
- Is rugged enough for transport and usage
- Operates between -20°C and 55°C
- Is scalable to optimize the power supply based on a given mission

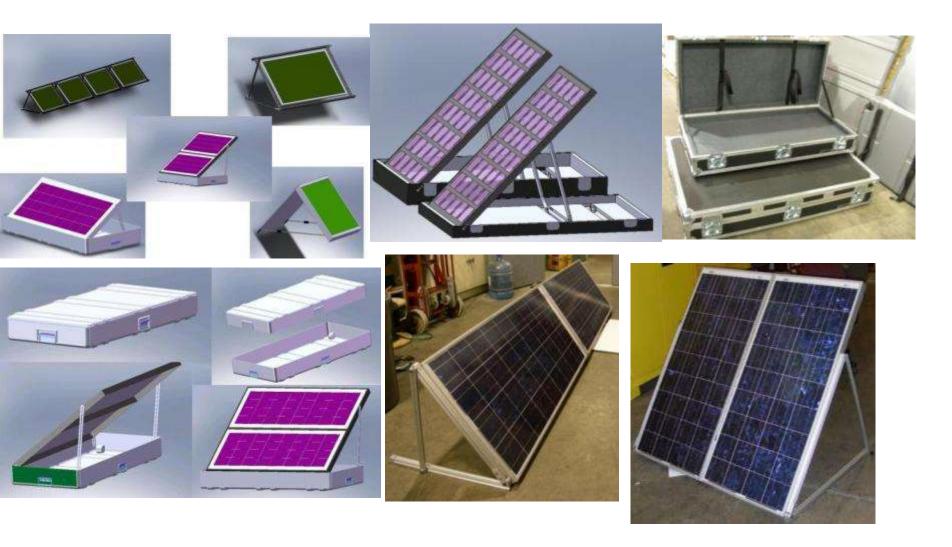



#### Solar vs. Wind

- It was determined at the outset that solar would be selected to best meet the requirements laid out by Marine Corps Systems Command
  - Rapid deployment
  - Deployable in nearly every location
  - Minimal required training
  - Reduced signature (No required guyed tower, no noise or EMI concerns)

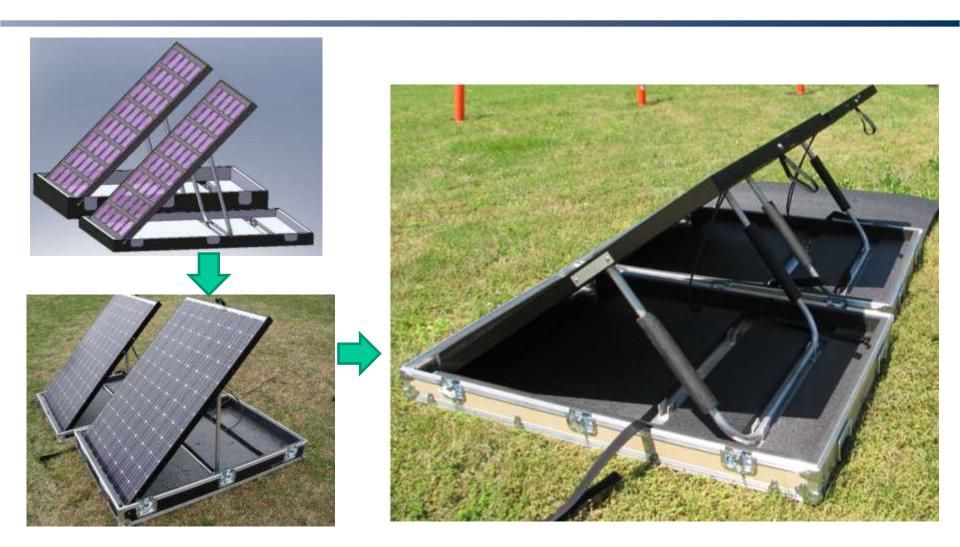


#### **Solar Power Characteristics**


 Location, time of year, and deployment angle all play critical roles in determining solar energy production



\*Data taken from NREL's PVWatts calculator http://www.nrel.gov/rredc/pvwatts/




# **GREENS Deployment Concept Development**





# **Deployment Concept Selection**

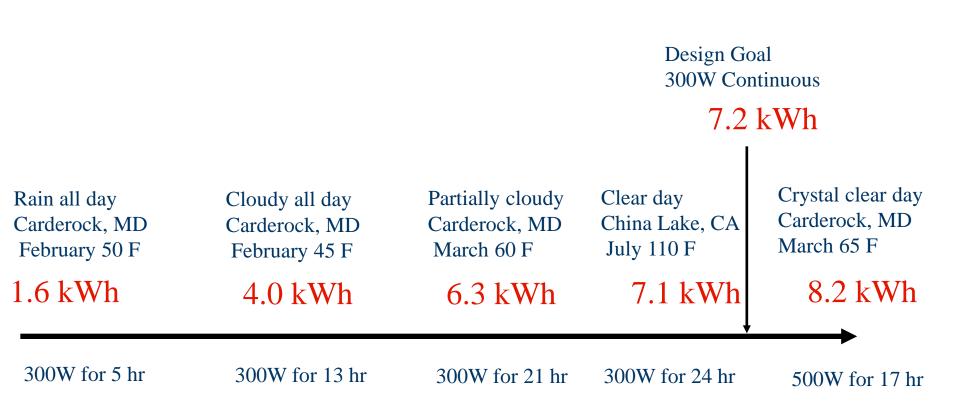




#### Prototype Evaluation of GREENS: NAWS China Lake







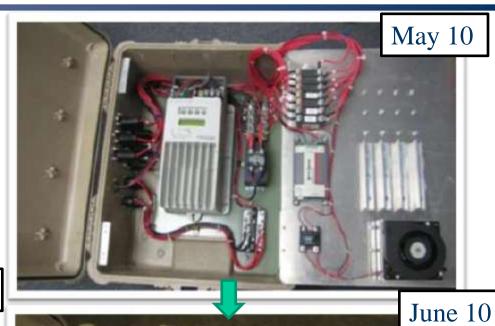

#### **Objectives:**

- To demonstrate the prototype GREENS system capable of delivering 300W continuously
- To study the effect of temperature and the harsh environment of the Mojave Desert on the overall performance of the system.



## **Summary of Energy Generation**






# **Control Box Development**





May 3-5 2011





Joint Service Power Expo



# **Development Timeline**

GREENS Tech. demonstrator NAWS China Lake, CA



GREENS Tech. Demonstrator Ex-FOB Phase II Quantico, VA



GREENS Prototype Camp Pendleton, CA



GREENS Prototypes Twentynine Palms, CA



May 3-5 2011 Joint Service Power Expo



# India Co. 3/5 Deploys With 7 Systems



From project start to a limited fielding in 23 months!



## **Need For Production Level System**

- EPS worked concurrently during the GREENS development to identify vendors to build the production level system
- Lessons learned and performance metrics from the Prototype systems were used in the performance specification definition
- UEC and HDT were chosen to build prototypes of the production level system
- Testing of those systems is ongoing



# **Production Version Improvements**

|                                       | Prototype System | <b>Production System</b> |
|---------------------------------------|------------------|--------------------------|
| Continuous Power                      | 300W             | 300W                     |
| Peak Power                            | 600W             | 1000W                    |
| Total Weight                          | 1200lbs          | 900lbs                   |
| Setup time (4 marines)                | 10 minutes       | 10 minutes               |
| Operation Range                       | 0F-140F          | 0F-140F                  |
| Output                                | 120VAC/24VDC     | 120VAC/24VDC regulated   |
| Battery Technology                    | Lead Acid        | Li-Ion                   |
| Autostart Capability                  | No               | Yes                      |
| Battery State of Charge<br>Indicators | No               | Yes                      |
| DC Charging                           | No               | Yes                      |
| AC Charging                           | No               | Yes                      |



#### Why Use Renewables?

#### Renewables are heavy and expensive but...

- No need to re-fuel the system (Reduced logistics burden). System can be self-sustaining in remote areas
- Short-term weight reduction benefit
- Lifecycle cost benefit
- Silent operation
- No mandatory MOS (Operated by the Incidental Operator)
- Reduction in maintenance (no oil/oil filter changes)
- Long lifetime (panels last 25 years)



#### **Conclusions**

- Renewable energy systems will never be able to replace conventional power sources for power levels greater than 100kW
- When selected for the appropriate use scenario, rugged renewable systems can be developed and deployed to reduce fuel consumption and benefit the warfighter
- A detailed cost benefit analysis would have to be undertaken to determine under what scenarios GREENS could provide cost savings



### Acknowledgements

#### **Sponsors**

- Michele Anderson Office of Naval Research
- Michael Gallagher PM Expeditionary Power Systems,
  Marine Corps Systems Command

#### Team

• Justin Govar, Matt Huffman, Evan Rule, Alex Askari, Calvin Peters, Anthony Suggs, Erick Satchell, Dave Meldrum



# **Questions?**



## Rugged Battery Case Design

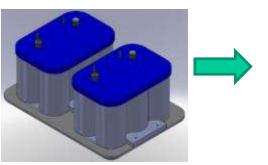
- Lead Acid batteries previously connected manually with no packaging
- Prototype design packaged in a 24V configuration in cases

#### Tech. Demonstrator Battery



Die Hard Marine Deep Cycle Lead Acid

- 100Ah
- 75lbs


#### Prototype Battery Design

#### Optima Deep Cycle Lead Acid

- 55Ah (2 per pack)
- 110 lbs
- 60A Breaker







